
Journal of Statistical Physics, Vol. 62, Nos. 3/4, 1991 

Finite-State Neural Networks. A Step Toward 
the Simulation of Very Large Systems 

G. A. Kohring 

Received May 10, 1990;final July 24, 1990 

Neural networks composed of neurons with Q~ states and synapses with Q/ 
states are studied analytically and numerically. Analytically it is shown that 
these finite-state networks are much more efficient at information storage than 
networks with continuous synapses. In order to take the utmost advantage of 
networks with finite-state elements, a multineuron and multisynapse coding 
scheme is introduced which allows the simulation of networks having 1.0 • 109 
couplings at a speed of 7.1 x 109 coupling evaluations per second on a single 
processor of the Cray-YMP. A local learning algorithm is also introduced which 
allows for the efficient training of large networks with finite-state elements. 

KEY WORDS: Neural networks; multi-spin coding; replica method; finite- 
state networks; learning algorithms. 

1. I N T R O D U C T I O N  

Through the work of many different research groups, it has been estab- 
lished that neural networks can in theory perform elementary cognitive 
operations such as associative memory t~ and generalization, t2) These 
results are very encouraging for biological studies; however, to study ever 
more realistic and complex networks, computer simulations of very large 
systems will be required. Furthermore, the adaptation of biological com- 
putational methods for artificial neurocomputing may require the construc- 
tion of some novel types of computing devicest3); but the feasibility of such 
neurocomputational approaches must first be demonstrated via simula- 
tions, and perhaps even modest implementations, on conventional corn- 
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puters. For both of these reasons, one needs the ability to handle very large 
neural networks as fast and efficiently as possible. 

For the sake of concrete discussions, we consider here the class of 
neural network models known as "attractor neural networks" (ANN), (4~ 
the prototypical network of this class being the Little-Hopfield model. ~ 
Attractor neural networks are extremely useful for analytical and numerical 
discussions because of the relative simplicity with which their performance 
can be quantified. 

When simulating very large systems, the elementary variables must be 
chosen with care so that only the essentials are included. Now, many 
researchers consider the firing rate of cortical neurons to be a continuous 
function of the membrane voltage (see, e.g., ref. 6). However, given the 
noisy character of the individual neurons, it is implausible that an 
arbitrarily small change in the neuron firing rate is meaningful. Rather, if 
two different firing rates are to be significant, then the difference between 
the two firing rates must be greater than that resulting from random noise. 
Since the neuron firing rate is bounded above, ~7) this naturally leads to the 
concept of neurons with only a finite number of firing states. A similar 
argument holds when considering the plasticity of the synaptic connections. 
Hence, networks of finite-state elements may be more relevant for biologi- 
cal studies than the continuously varying elements which are often used. 

To quantify one aspect of the performance of ANN models composed 
of neurons with Q.,. states and synapses with QI  states, consider the 
efficiency with which information is stored. For a network with N neurons, 
the storage of P random patterns is accomplished with an efficiency given 
by 

total number of bits to be stored ~(Q*, Qt)= 
total number of bits used for storage 

PN In Q~ 
N 2 In Q t  

U ~  oo) ~(Qy,  QI) In  Q~  (i.1) 
In Qy 

where ~(Q~, Q . ~ ) = l i m N ~  PIN. One of the main results of the analytic 
investigations in Section 2 is that this efficiency of information storage is 
severly degraded whenever QI >> Q.*" Thus, the most commonly studied 
ANN model, Q.,. = 2 with continuous synapses, is also the most inefficient 
in terms of information storage. 

Given the increased storage efficiency for finite-state networks, a 
simulation algorithm to maximize these benefits is needed. In Section 3, a 
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single-bit handling algorithm known as multineuron coding C8"9~ is intro- 
duced, and shown to achieve the above theoretical storage limits. As 
an additional bonus, this storage algorithm allows the construction of 
updating algorithms that are up to 35 times faster than the conventional, 
one-word, one-neuron algorithms. Indeed, the algorithm discussed in 
Section 3 hasbeen  run on a Cray-YMP using a network with 1.0• 109 
couplings and it achieved an updating speed of 7.1 x 10 9 couplings per 
second (7.1 Gcops), compared with a speed of only 0.2 Gcops using con- 
ventional algorithms. 

Now, speed and storage efficiency are fine, but finite-state networks 
must still be able to function as associative memory devices. It is well 
known from studying the case of Q.,. = 2 with continuous synapses that the 
basins of attraction become arbitrarily small as a-o  2. "~ In fact, already 
at ct ~ 0.5, any given pattern cannot, on average, be recalled, if the input 
pattern contains more than 10% errors. If one takes this 10% error 
criterion as defining an effective ae, then one needs to ask how large is ae 
for finite-state networks? Since there is no known method for calculating 
the basins of attraction analytically, they must be determined numerically. 
This, of course, requires the need of a learning rule to train the network. 
A local learning rule well suited for this purpose is discussed in Section 4. 
There it is also discussed how a network with Q., = 2 and Q1 = 3, reaches 
the 10% error criterion at ~,. ~ 0.31. In terms of ~, this defines an effective 
storage efficiency which is far superior to that obtainable with continuous 
couplings. 

It is obvious from the above discussion that this paper is arranged as 
follows: Section 2 examines analytically the efficiency with which finite-state 
networks store information; Section 3 then looks at an algorithm for the 
fast updating of such networks; Section 4 takes up the question of learning 
for finite-state ANN models; and the final section concludes with a com- 
parison of some of the different networks discussed in the paper. 

2. NEURONS AND SYNAPSES WITH A 
FINITE NUMBER OF STATES 

Consider a single-layer neural network of N formal neurons {Si(t)} 
( i=  I,..., N), each of which can take on Q x  distinct states {r/i} 
( i=  1 ..... Qy) .  (Biologically, as noted above, this represents Q x  distinct 
neuron firing rates.) These neurons are to be connected by N 2 synaptic 
couplings J,..j, which are allowed only Q,, discrete states. (For simplicity 
consider only two-neuron interactions. The extension to the more general 
case of multineuron interactions ttl~ is straightforward.) The network is then 
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allowed to evolve under zero-temperature (noise-free) dynamics, which can 
be either parallel or asynchronous: 

{! 1 if O--(tl~)<~h~(S[t])<~O+(~lL) 

S~(t+ 1)= (2.t) 

o ,  if 0 (qQ~)<~h~(S[t])<~O+(~lQ,) 

where h~(S[ t] )=~/~iJ~/S / ( t ) ,  and the thresholds {0-~(q)} are a priori 
defined constants. 

If one wants to store P patterns in this network, i.e, if one wants to 
make P states {~}  (/~= 1 ..... P) fixed points of the above dynamics, then 
for random patterns (correlated patterns can be treated analogously), the 
efficiency with which this can be done is given by Eq. (I.1). For continuous 
couplings and two-state neurons, ~ = 2 ,  t12) and g = 0. From an information 
storage point of view this is extremely inefficient. As noted in the introduc- 
tion, this efficiency can be increased by considering finite-state networks. 
(In reality one does not have an infinite number of synaptic states 
available, since this would require an infinite number of molecules; 
hence, strictly speaking, it is rater meaningless in this contex to speak of 
"continuous synapses.") Determining g(Q~.,  Q : )  for finite-state networks 
requires a determination of ~t(Q,,  Q,,). 

As in the case of continuous couplings," 3) determining ~(Q e,  Q~,) can 
be done by calculating the total volume of the synaptic space V. r which 
solves the fixed-point constraints and then looking for the largest value of 
P such that this volume is nonzero. Vr is given by 

i, p i 

where 

1 h,(~")-(Na),/2 ~ Ju~ (2.3) 
j ~ i  

a = (1/Q,v) ~ i  tl~, B(a, x, b) is the barrier function defined by B(a, x, b) =- 
So,, dy 6(y - x), and Z =- ~ s  6(Y.j~ i(Jo.) 2 - N). The delta function simply 
defines the scale for the Jij. (Any scale can be used so long as the results 
of calculations with different scales are renormalized before comparison.) 
In order to get ~(Qw, Q: ) ,  one must average v r  over all possible sets of 
patterns {~}.  However, the patterns form a set of quenched, random 
variables and one cannot average quantities such as Vr over quenched 
variables; rather, one must average only extensive quantities. (21) The 
entropy per coupling 6 : = - ( 1 / N ) l n  VT is such an extensive quantity~ 
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Averaging of 6 e over the { ~ }  can be done in a well-defined manner as 
discussed in refs. 14 and 23 for the case Q ~  = Q~ = 2. The extension to 
the more general case represented here is straightforward and results in 
the following expression for 6a: 

1 ~ f ~ ~f (~247 } (r to 
6P= - c t ( Q . , ,  Q r )--~ ,@tin ~y - 

i - I 'r ~ J ( O  [ q , j + r l / 2 t ) / [ l  r )  I/2 2 2 

f~'~ f ~ I to+(J2+('/2vJ]} (2.4, - ~v  In exp - 
- - c o  k J  t -  

where 

dx 
- -  e - ~ / 2  ( 2 . 5 )  ~ x  = (27r),/2 

The values of (, to, and r are fixed by the saddle-point conditions 36e/c~( = 
&~/&o = t3~e/Or = 0. Here r can be physically interpreted as the average 
overlap between sets of J~/which solve the fixed-point constraints of (2.3). 

is the conjugate variable to r, and to ensures that the scale of the 
couplings is correctly fixed. For the case Q,r Krauth and 
M6zard conjectured that, since the entropy ,~ cannot be negative, the 
maximum value of ~ is found when ,cT vanishes/14~ Although this conjec- 
ture has not been rigorously established, it is physically plausible and has 
given reliable results for the case Q, = Qr -- 2. Hence, this conjecture will 
be invoked here and shown to yield reasonable results. Unfortunately, the 
location of the maximum value of a cannot, in general, be found analyti- 
cally, but can be found easily on a small computer. 

/Figure 1 shows a plot of ~ vs. Q j  for Q,~ = 2 as found from the above 
equations. The neuron states are chosen to be r/i = - 1 ,  r/2= + l ,  and the 
thresholds are defined as 0 - ( - l ) = - 0 + ( + l ) = - ~  and 0 + ( - 1 ) =  
0 ( + l ) = 0 .  The synaptic states are chosen as { - ( Q y - 1 ) / 2  ..... 
( Q j  + 1)/2} when Q,~ is odd and {-Q1/2, . . . ,  Q,~/2} (omitting the zero 
state) when Q,I is even. This choice for the thresholds provides optimal 
performance. From Fig. 1 it can be seen that the most efficient information 
storage occurs for a small number of synaptic states; in fact, for two-state 
synapses, ~ is about 14 times larger than for continuous synapses on a 
32-bit computer. Note that d ~ falls off logarithmically with increasing Qx ,  
indicating that a, a measure of the maximum number of patterns which can 
be stored, saturates rather quickly. It can also be seen in the figure that the 
efficiency of networks made from synapses with an odd number of states is 
slightly greater than what one would expect by interpolating between the 
points for networks made from synapses with an even number of states. 
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This is most probably due to the presence of a synaptic state with zero 
strength. Apparently, allowing some synapses to be zero can slightly 
improve the storage efficiency. Previous researchers have discussed setting 
an a priori defined fraction of the synapses to zero and they also find per- 
formance improvements. ~22~ The difference between the former approaches 
and the present one is one of quenching the synapses versus annealing the 
synapses. 

Figure 1 also shows solutions for Q.,. = 4. Here, the neuron states were 
chosen to be r/l = - 2 ,  r/2 = - 1 ,  q3 = +1, ~/4 = +2, and the thresholds were 
defined as 0 - ( - 2 ) =  - 0 + ( + 2 ) =  - ~ ,  0 + ( - 2 ) = 0  - ( - 1 ) =  - 0 + ( +  t ) =  
- 0 - ( + 2 ) =  -0.57, and 0 + ( - 1 ) = 0  ( + 1 ) = 0 .  The synapticstates were 
kept the same. Again, these values of the thresholds were chosen so as to 
provide optimal performance. Once more it is seen that the eff• of 
information storage decreases logarithmically from the maximum value of 

~ 0.97 at Qs  = 2. And again, the synapses with an odd number of states 
perform slightly better than expected. 

Lastly, Fig. 1 gives for comparison the solutions obtain when Q.~ = 3. 
Here, the neuron states were chosen to be r/1 = - 1 ,  r12=0, % =  +1, and 
the thresholds were defined as 0 ( - 1 ) =  - 0 + ( + 1 ) =  -~v  and 0 - ( 0 ) =  
- 0 + ( +  1)=0.52. The synaptic states were the same as for cases of even 
Q , .  It can easily be seen that networks composed of neurons with three 
states are slightly less efficient than those composed of neurons with two 
states. This seems to be an effect due to the presence of a zero neuron state, 
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Fig. 1. Efficiency of information storage as a function of the number of synaptic states. The 
circles are for networks with two-state neurons, the squares for networks with four-state 
neurons, and the triangles for networks with three-state neurons. 
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since, as Qw becomes large, the efficiencies of networks with an odd 
number of neuron states converges to that of networks with an even 
number of neuron states. 

There are three special limits when the maximum value of ~ can be 
found exactly: (1) Q~ ~ az with Qw fixed, (2) Q.~.~'bo with Q~ fixed, 
and (3) Q x ,  Q~ ~ oo with Q.~./Q~ ~ const. The first case yields the simple 
relationship o~oc 1/lnQr For the second and third cases, ~ ( Q , , Q r  
depends only upon 0 (~/Q.,~) and the width of the threshold region, zt0 = 
10+(t/i)- O-(qi) r ( i=  2,..., Qw - 1) [assuming 0-(t / l)  = -0+(r /e)  = - a z ] .  

- - a  1 - - a  When AOocQw and O-(qe.,~)ocQw , then, in cases 2 and 3, r ~ O  and 
the following equation is easily obtained: 

In Q ~  
g(Q+' ,  Q t )  ~ a In Q x  + Q%1 -~) • const (2.6) 

Hence, for cases 2 and 3, if a >/1, then g ~ 1/a and if a < 1, then g ~ 0. 
Thus, with a =  l, g asymptotically approaches maximum efficiency. It 
would be interesting if the exponent a could be related to the gain 
parameter in analog neural networks, ~6) so that one could interpolate 
between the two approaches. 

For simulation purposes, not only is the efficiency of information 
storage important, but the absolute number of bits needed is also of impor- 
tance. On a computer with B bits per word, a fully connected network with 
N neurons and N 2 couplings requires O(BN 2) bits when both the 
couplings and neurons are real variables. On the other hand, a network of 
two-state neurons and synapses requires only O(N 2) bits. With a 32-bit 
machine, this amounts to using 32 times fewer bits. In order to realize this 
advantage in the absolute storage requirements, a fast algorithm is needed 
for the updating of networks in which single bits are used to describe single 
neurons and/or synapses. Such an algorithm is presented in the next 
section. 

3. A FAST NUMERICAL SIMULATION ALGORITHM 

For any neural network simulation, the quantity which must be 
repeatedly calculated is the local field hi(S[t]), 

hi(S[t]) = ~, JoS/(t) 
j ~ i  

= ~ JqSj ( t )  - JuSi ( t )  
J 

= H i ( t ) -  JiiSi(t) (3.1) 

Updating the entire network once involves calculating Hi(t) at every site, 
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i.e., O ( N  2) arithmetic operations. Therefore, it is fitting to concentrate on 
calculating Hi(t) as fast and efficiently as possible. This can be done by 
generalizing the multineuron coding algorithm developed for the Hopfield 
model.(8,9) 

Consider the case Q,, = Q I  = 2. In this case, only one bit is needed to 
describe a single neuron or synapse. If the two neuron states are ~/1 = - t  
and r/2= +1 and the synapses are likewise, then the following corre- 
spondence can be made between the computer bits and the neuron states: 
0 ~ -1  and 1 ,*~ 1. Since conventional computers operate on words with B 
bits in one word, it is possible to store B neurons or synapses in one com- 
puter word. Denote such a word by a(w) for the neurons and )~(i, w) for the 
synapses; then Eq. (3.1) can easily be calculated by using the following 
expression to calculate Hi(t): 

Hi(t) = N -  2 ~ POPCNT(2(i ,  w)| (3.2) 
w 

where | symbolizes the XOR (excluded or) function, and POPCNT 
counts the number of bits set equal to one in its argument. Since the sum- 
mation unavoidably includes the diagonal term J,,, this term should be 
subtracted as indicated in Eq. (3.1) if it is not desired. Equation (3.2) 
requires only O(N2/B) arithmetic calculations, because B coupling evalua- 
tions are made each time the XOR and POPCNT commands are executed. 

This procedure has been implemented on the Cray-YMP/832 using 
Cray-standard Fortran. A fully connected network with N=32,000 
neurons (1.024 x 10 9 couplings) ran at a speed of 7.1 • 109 coupling evalua- 
tions per second (7.1 Gcops) on a single processor. Using a standard algo- 
rithm and the same amount of memory, one can simulate a network with 
only N ~  4000 neurons (1.6 • 107 couplings). Furthermore, a conventional 
one-word, one-neuron algorithm runs at 0.2 Gcops on a single processor, 
or a about 35 times slower than the present algorithm. (On all eight 
processors of the Cray-YMP/832, the present algorithm would run at 
about 50 Gcops and the conventional algorithm would have a speed of 
about 1.5 Gcops.) 

Starting from this basic algorithm, the extension to cases of larger Q 
or Q t  is straightforward. For example, at Q.~, = 4 and Q~ = 2 (or, by sym- 
metry, Q ~  = 2, Q t  = 4) one can store the four states of Q x  in two bits on 
two different words, e.g., a(w) and Q(w). If ql = -2 ,  r/2= - 1 ,  r/3= +1, 
r/4 = +2, then one bit in a(w) is used to indicate the absolute value and one 
bit in Q(w) to indicate the sign. Hi(t) is then calculated as 

Hi(t)  = N + ~ POPCNT(Q(w)) - 4 ~ POPCNT(L0(w) A (2(i, w) |  a(w))) 
w w 

- 2 ~ POPCNT(-TO(w) ^ (2(i, w)| a(w))) (3.3) 
w 
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where ^ symbolizes the logical AND function and 7 symbolizes the logi- 
cal NOT function. Such a program requires N 2 + 2N bits (2N 2 + N bits for 
Q.r =2,  Q :  =4),  and it runs at approximately 2.5 Gcops. Although the 
speed is considerably reduced from that obtainable with Q.e. = Q :  = 2, it 
still runs ten times faster than if real words had been used. 

Such constructions can be continued for larger values of Qo~- and Q : ,  
although at the cost of diminishing returns. The speed of the program falls 
off rather rapidly, leaving low memory usage as the only advantage to 
using the above algorithm. But with the high storage efficiencies achieved 
for small values of Q,: and Q : ,  there may be little reason to consider 
using larger values. 

4. LEARNING IN FINITE-STATE NETWORKS 

An obvious approach to learning in systems composed of finite-state 
neurons and synapses is to use a truncated version of Hebbian couplings. 
With Qx = Q :  = 2, one obtains the so-called "clipped-synapses" model, 
which has been studied in detail and yields results similar to the Hopfield 
model. 115~ All such one-step learning rules are known to give far from 
optimal performance 116) and one would like to construct networks which 
perform near the optimal performance discussed in Section 2. Forrest used 
an exact enumeration scheme to find the optimal couplings in his studies 
of a Q~ = Q :  = 2 network on a nearest-neighbor, two-dimensional square 
latticeJ ~7) But when the number of couplings per neuron grows like N, such 
a learning procedure becomes impractical. 

One method for learning which has produced good results for fully 
connected, Q~ = Q :  = 2 networks of up to a few hundred neurons is that 
of simulated annealingJ ~ This method is very general; however, it is non- 
local and somewhat time consuming. Although it is desirable to have a 
local learning rule such as those which exist for networks with continuously 
varying synapses ~2~ (see ref. 19 for a review), that does not seem to be 
possible. Instead, one can easily create a local learning rule which is 
"guided" by a real vector. 

Consider the problem of making the states {~}  stable states of a 
network with Q,.=Q: =2.  In this case, the fixed-point constraints of 
Eq. (2.3) reduce to t~2~ 

1 
h~'= / - ~  r162 Vi and ~ (4.1) 

,,/ iv /~ i 

where ~c is a constant which determines the size of the basins of attraction. 
A simple local learning rule which must be executed sequentially over the 
patterns and nodes can be defined as follows: 

8,22,,62/3-4-5 
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I. Calculate an error  mask e,~' for pat tern ~: 

J'l if x>_,h~ 
e, i = (4.2) 

0 if x<h~' 

2. Change a real vec tor  Tj. by A 7"/-=Ei~i@l.g--n,'~"~"l'" "~"t. 
3. Change  J0 to Ju = sgn(T/). 

4. Repeat steps 1-3 until condit ion (4.1) is satisfied. 

This learning algori thm is an extension of the learning algori thms used 
with cont inuous  coupling networks  (see ref. 19 for a review). It is simple to 
implement  and requires only an addit ional  real vector of length N. Since 
the storage requirements of the p rogram grow like O(N:) bits, the addi- 
tional NB bits needed for this vector  are not normal ly  important .  Further-  
more,  this a lgori thm is easily extendible to the more  general situation of 
Q.,,Qy>2. 

Unlike the case of cont inuous synapses, this algori thm cannot  be 
proven to converge to a solution of (4.1), even when such a solution exists. 
For  this reason, it will be demonst ra ted  via numerical  simulations that the 
learning algori thm presented here does perform quite reasonably.  

Figure 2 shows a plot of  the learning time of the above algori thm as 
a function of h at N = 4 0 9 6  and e = 0 . 2 5  for Q.,~. = Q r  c~=0.31 for 
Q., = 2 ,  Q~ = 3 ,  and e = 0 . 5  for Q+ = 2  with cont inuous synapses. In this 
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figure, the maximum value of x is signaled by the sharp increase in the 
learning time. Using x=0.35 for Q+. = Q t  = 2 and K= 0.50 for Q+-= 2, 
Q t  = 3, so that the learning time is not too long, but the network is near 
optimal, the probability of recall has been calculated and is shown in 
Fig. 3. The probability of recall for random patterns is calculated by 
starting the system in some randomly chosen configuration {Sj(0)} having 
an overlap m~'(0)-= ( l / N ) ~ j  S~(0)~  with pattern # and then updating the 
system in parallel, using Eq. (2.1), until a fixed point is reached. Figure 3 
shows that at these values of ~ the systems can indeed function as 
associative memory devices. Since the maximum value of x decreases as 
increases, larger values of ct will have smaller basins of attraction and these 
systems will no longer function as associative memory devices; hence, 
~,, ~ 0.25 for Q. ~.= Q~ = 2 and ~e'~ 0.31 for Q.~ = 2, Q t  = 3. Note that ~e 
is about four times smaller than the optimal ~ shown in Fig. 1. This is in 
rough agreement with the results found for continuous couplings, where 
the effective maximum crew0.5 was also found to be about four times 
smaller than the theoretical maximum, t~~ 

The learning algorithm presented here is local, simple to implement, 
and seems to be among the fastest so far discussed in the literature (for 
alternative learning algorithms see ref. 20). For finite-state networks it is a 
good starting point for simulation purposes, and so far has shown that 
such networks perform better than their continuously varying counterparts. 
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Fig. 3. Probability of retrieval for an N=4096 network. Circles are for Q., = Q r  = 2  at 
~=0.25, and the squares are for Q.~ =2, Q ,  =3  at ct =0.31. 
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5. S U M M A R Y  AND CONCLUSIONS 

The main results of this paper are summarized in Table I, where the 
Q . , . = Q s = 2  network, the Q.e.=2, Q r  network, and the Q.+ =2 
network with continuous couplings are compared when all of these systems 
are implemented on the 64-bit Cray-YMP. Here it is easily seen that the 
performance of finite-state networks is superior to that of networks with 
continuously varying synapses in four of the five categories. The main 
advantage of synapses with a large number of states seems to be faster 
learning, but for this price, most of the coupling space is wasted, resulting 
in low efficiency. It would seem that high storage efficiency can only be 
achieved at the expense of long learning times. More generally, the calcula- 
tions of Sections 2 and 3 have shown that whenever Qr ~>Q.~., the 
network performance is severely degraded in all respects except learning 
time. For those designing novel computing devices, this can be very impor- 
tant because neurons or synapses with a small number of states are simpler 
to construct than those with a larger number of states. 

Furthermore, with regard to possible neural network device implemen- 
tations, the present work suggests that there is a great deal of parallelism 
which can be exploited in conventional computer designs. In the short 
term, it may be worthwhile to consider computers with a small number of 
processors, each working with very long words. With the algorithm intro- 
duced in Section 3, a speedup equal to the increase in word length is easily 
achieved if the clock frequency can be held fixed. Such speedups are not so 
easily obtained on massively parallel machines. 

With respect to biology, the present results have indicated the inef- 
ficiency of systems with Q~ >> Q,.. It would be of great interest, then, if the 
situation with respect to the number of neuron firing states and the number 
of synaptic states could be clarified. This would give a better indication of 

Table I. Comparison of Performance Factors for Finite-State Neural 
Networks Running on a Single Processor of the Cray-YMP" 

Bits Speed Learning 
Network type gm,x ~rf required (Gcops) steps 

Q.~ = Q j  = 2 0.833 0.25 N 2 7.1 57 
Q ~ = 2, Qj = 3 0.740 0.20 2N 2 2.4 39 

Q. ~ = 2, Q~ = 264 0.031 0.008 64N 2 0.2 17 

a The last column gives the median number of learning steps at N =  4096 when the network 
is operating near gerr. Q t  = 2u  represents the Cray approximation to continuous synapses. 
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the relative importance nature has placed upon the speed of learning as 
opposed to the efficiency of information storage. 

One final point with respect to neural network implementations; since 
a Q,~ = Q s  = 2 network has ~e only half of that for a network with con- 
tinuous couplings, it means that a Q x  = Q t  = 2 network with 2N neurons 
can store as many patterns as an N-neuron network with continuous 
couplings. Moreover, the former network with still require far fewer bits for 
storage and it will still update about eight times faster. Hence, on conven- 
tional computers there is clearly much to be gained by using the algorithms 
introduced in this paper. 
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