
Journal of Statistical Physics, Vol. 62, Nos. 3/4, 1991

Finite-State Neural Networks. A Step Toward
the Simulation of Very Large Systems

G. A. Kohring

Received May 10, 1990;final July 24, 1990

Neural networks composed of neurons with Q~ states and synapses with Q/
states are studied analytically and numerically. Analytically it is shown that
these finite-state networks are much more efficient at information storage than
networks with continuous synapses. In order to take the utmost advantage of
networks with finite-state elements, a multineuron and multisynapse coding
scheme is introduced which allows the simulation of networks having 1.0 • 109
couplings at a speed of 7.1 x 109 coupling evaluations per second on a single
processor of the Cray-YMP. A local learning algorithm is also introduced which
allows for the efficient training of large networks with finite-state elements.

KEY WORDS: Neural networks; multi-spin coding; replica method; finite-
state networks; learning algorithms.

1. I N T R O D U C T I O N

Through the work of many different research groups, it has been estab-
lished that neural networks can in theory perform elementary cognitive
operations such as associative memory t~ and generalization, t2) These
results are very encouraging for biological studies; however, to study ever
more realistic and complex networks, computer simulations of very large
systems will be required. Furthermore, the adaptation of biological com-
putational methods for artificial neurocomputing may require the construc-
tion of some novel types of computing devicest3); but the feasibility of such
neurocomputational approaches must first be demonstrated via simula-
tions, and perhaps even modest implementations, on conventional corn-

i Hfchstleistungsrechenzentrum an der KFA Jfilich, D-5170 Jiilich, Germany.

563

0022-4715/91/0200-0563506.50/0 (~.~ 1991 Plenum Publishing Corporation

564 Kohring

puters. For both of these reasons, one needs the ability to handle very large
neural networks as fast and efficiently as possible.

For the sake of concrete discussions, we consider here the class of
neural network models known as "attractor neural networks" (ANN), (4~
the prototypical network of this class being the Little-Hopfield model. ~
Attractor neural networks are extremely useful for analytical and numerical
discussions because of the relative simplicity with which their performance
can be quantified.

When simulating very large systems, the elementary variables must be
chosen with care so that only the essentials are included. Now, many
researchers consider the firing rate of cortical neurons to be a continuous
function of the membrane voltage (see, e.g., ref. 6). However, given the
noisy character of the individual neurons, it is implausible that an
arbitrarily small change in the neuron firing rate is meaningful. Rather, if
two different firing rates are to be significant, then the difference between
the two firing rates must be greater than that resulting from random noise.
Since the neuron firing rate is bounded above, ~7) this naturally leads to the
concept of neurons with only a finite number of firing states. A similar
argument holds when considering the plasticity of the synaptic connections.
Hence, networks of finite-state elements may be more relevant for biologi-
cal studies than the continuously varying elements which are often used.

To quantify one aspect of the performance of ANN models composed
of neurons with Q.,. states and synapses with QI states, consider the
efficiency with which information is stored. For a network with N neurons,
the storage of P random patterns is accomplished with an efficiency given
by

total number of bits to be stored ~(Q*, Qt)=
total number of bits used for storage

PN In Q~
N 2 In Q t

U ~ oo) ~(Qy, QI) In Q~ (i.1)
In Qy

where ~(Q~, Q . ~) = l i m N ~ PIN. One of the main results of the analytic
investigations in Section 2 is that this efficiency of information storage is
severly degraded whenever QI >> Q.*" Thus, the most commonly studied
ANN model, Q.,. = 2 with continuous synapses, is also the most inefficient
in terms of information storage.

Given the increased storage efficiency for finite-state networks, a
simulation algorithm to maximize these benefits is needed. In Section 3, a

Finite-State Neural Networks 565

single-bit handling algorithm known as multineuron coding C8"9~ is intro-
duced, and shown to achieve the above theoretical storage limits. As
an additional bonus, this storage algorithm allows the construction of
updating algorithms that are up to 35 times faster than the conventional,
one-word, one-neuron algorithms. Indeed, the algorithm discussed in
Section 3 hasbeen run on a Cray-YMP using a network with 1.0• 109
couplings and it achieved an updating speed of 7.1 x 10 9 couplings per
second (7.1 Gcops), compared with a speed of only 0.2 Gcops using con-
ventional algorithms.

Now, speed and storage efficiency are fine, but finite-state networks
must still be able to function as associative memory devices. It is well
known from studying the case of Q.,. = 2 with continuous synapses that the
basins of attraction become arbitrarily small as a-o 2. "~ In fact, already
at ct ~ 0.5, any given pattern cannot, on average, be recalled, if the input
pattern contains more than 10% errors. If one takes this 10% error
criterion as defining an effective ae, then one needs to ask how large is ae
for finite-state networks? Since there is no known method for calculating
the basins of attraction analytically, they must be determined numerically.
This, of course, requires the need of a learning rule to train the network.
A local learning rule well suited for this purpose is discussed in Section 4.
There it is also discussed how a network with Q., = 2 and Q1 = 3, reaches
the 10% error criterion at ~,. ~ 0.31. In terms of ~, this defines an effective
storage efficiency which is far superior to that obtainable with continuous
couplings.

It is obvious from the above discussion that this paper is arranged as
follows: Section 2 examines analytically the efficiency with which finite-state
networks store information; Section 3 then looks at an algorithm for the
fast updating of such networks; Section 4 takes up the question of learning
for finite-state ANN models; and the final section concludes with a com-
parison of some of the different networks discussed in the paper.

2. NEURONS AND SYNAPSES WITH A
FINITE NUMBER OF STATES

Consider a single-layer neural network of N formal neurons {Si(t)}
(i= I,..., N), each of which can take on Q x distinct states {r/i}
(i= 1 Qy) . (Biologically, as noted above, this represents Q x distinct
neuron firing rates.) These neurons are to be connected by N 2 synaptic
couplings J,..j, which are allowed only Q,, discrete states. (For simplicity
consider only two-neuron interactions. The extension to the more general
case of multineuron interactions ttl~ is straightforward.) The network is then

566 Kohrino

allowed to evolve under zero-temperature (noise-free) dynamics, which can
be either parallel or asynchronous:

{! 1 if O--(tl~)<~h~(S[t])<~O+(~lL)

S~(t+ 1)= (2.t)

o , if 0 (qQ~)<~h~(S[t])<~O+(~lQ,)

where h~(S[t])=~/~iJ~/S / (t) , and the thresholds {0-~(q)} are a priori
defined constants.

If one wants to store P patterns in this network, i.e, if one wants to
make P states {~} (/~= 1 P) fixed points of the above dynamics, then
for random patterns (correlated patterns can be treated analogously), the
efficiency with which this can be done is given by Eq. (I.1). For continuous
couplings and two-state neurons, ~ = 2 , t12) and g = 0. From an information
storage point of view this is extremely inefficient. As noted in the introduc-
tion, this efficiency can be increased by considering finite-state networks.
(In reality one does not have an infinite number of synaptic states
available, since this would require an infinite number of molecules;
hence, strictly speaking, it is rater meaningless in this contex to speak of
"continuous synapses.") Determining g(Q~., Q :) for finite-state networks
requires a determination of ~t(Q,, Q,,).

As in the case of continuous couplings," 3) determining ~(Q e, Q~,) can
be done by calculating the total volume of the synaptic space V. r which
solves the fixed-point constraints and then looking for the largest value of
P such that this volume is nonzero. Vr is given by

i, p i

where

1 h,(~")-(Na),/2 ~ Ju~ (2.3)
j ~ i

a = (1/Q,v) ~ i tl~, B(a, x, b) is the barrier function defined by B(a, x, b) =-
So,, dy 6(y - x), and Z =- ~ s 6(Y.j~ i(Jo.) 2 - N). The delta function simply
defines the scale for the Jij. (Any scale can be used so long as the results
of calculations with different scales are renormalized before comparison.)
In order to get ~(Qw, Q:) , one must average v r over all possible sets of
patterns {~}. However, the patterns form a set of quenched, random
variables and one cannot average quantities such as Vr over quenched
variables; rather, one must average only extensive quantities. (21) The
entropy per coupling 6 : = - (1 / N) l n VT is such an extensive quantity~

Finite-State Neural Networks 567

Averaging of 6 e over the { ~ } can be done in a well-defined manner as
discussed in refs. 14 and 23 for the case Q ~ = Q~ = 2. The extension to
the more general case represented here is straightforward and results in
the following expression for 6a:

1 ~ f ~ ~f (~247 } (r to
6P= - c t (Q . , , Q r)--~ ,@tin ~y -

i - I 'r ~ J (O [q , j + r l / 2 t) / [l r) I/2 2 2

f~'~ f ~ I to+(J2+('/2vJ]} (2.4, - ~v In exp -
- - c o k J t -

where

dx
- - e - ~ / 2 (2 . 5) ~ x = (27r),/2

The values of (, to, and r are fixed by the saddle-point conditions 36e/c~(=
&~/&o = t3~e/Or = 0. Here r can be physically interpreted as the average
overlap between sets of J~/which solve the fixed-point constraints of (2.3).

is the conjugate variable to r, and to ensures that the scale of the
couplings is correctly fixed. For the case Q,r Krauth and
M6zard conjectured that, since the entropy ,~ cannot be negative, the
maximum value of ~ is found when ,cT vanishes/14~ Although this conjec-
ture has not been rigorously established, it is physically plausible and has
given reliable results for the case Q, = Qr -- 2. Hence, this conjecture will
be invoked here and shown to yield reasonable results. Unfortunately, the
location of the maximum value of a cannot, in general, be found analyti-
cally, but can be found easily on a small computer.

/Figure 1 shows a plot of ~ vs. Q j for Q,~ = 2 as found from the above
equations. The neuron states are chosen to be r/i = - 1 , r/2= + l , and the
thresholds are defined as 0 - (- l) = - 0 + (+ l) = - ~ and 0 + (- 1) =
0 (+ l) = 0 . The synaptic states are chosen as { - (Q y - 1) / 2
(Q j + 1)/2} when Q,~ is odd and {-Q1/2, . . . , Q,~/2} (omitting the zero
state) when Q,I is even. This choice for the thresholds provides optimal
performance. From Fig. 1 it can be seen that the most efficient information
storage occurs for a small number of synaptic states; in fact, for two-state
synapses, ~ is about 14 times larger than for continuous synapses on a
32-bit computer. Note that d ~ falls off logarithmically with increasing Qx ,
indicating that a, a measure of the maximum number of patterns which can
be stored, saturates rather quickly. It can also be seen in the figure that the
efficiency of networks made from synapses with an odd number of states is
slightly greater than what one would expect by interpolating between the
points for networks made from synapses with an even number of states.

568 Kohr ing

This is most probably due to the presence of a synaptic state with zero
strength. Apparently, allowing some synapses to be zero can slightly
improve the storage efficiency. Previous researchers have discussed setting
an a priori defined fraction of the synapses to zero and they also find per-
formance improvements. ~22~ The difference between the former approaches
and the present one is one of quenching the synapses versus annealing the
synapses.

Figure 1 also shows solutions for Q.,. = 4. Here, the neuron states were
chosen to be r/l = - 2 , r/2 = - 1 , q3 = +1, ~/4 = +2, and the thresholds were
defined as 0 - (- 2) = - 0 + (+ 2) = - ~ , 0 + (- 2) = 0 - (- 1) = - 0 + (+ t) =
- 0 - (+ 2) = -0.57, and 0 + (- 1) = 0 (+ 1) = 0 . The synapticstates were
kept the same. Again, these values of the thresholds were chosen so as to
provide optimal performance. Once more it is seen that the eff• of
information storage decreases logarithmically from the maximum value of

~ 0.97 at Qs = 2. And again, the synapses with an odd number of states
perform slightly better than expected.

Lastly, Fig. 1 gives for comparison the solutions obtain when Q.~ = 3.
Here, the neuron states were chosen to be r/1 = - 1 , r12=0, % = +1, and
the thresholds were defined as 0 (- 1) = - 0 + (+ 1) = -~v and 0 - (0) =
- 0 + (+ 1)=0.52. The synaptic states were the same as for cases of even
Q , . It can easily be seen that networks composed of neurons with three
states are slightly less efficient than those composed of neurons with two
states. This seems to be an effect due to the presence of a zero neuron state,

1.001

~o.oo~

~ 0.80
,

0.70-
..E=
0

~0.60-

0.50-

0.40

[]
[]

[]
[]

[] []
& �9

A �9
A

! l

[]

1 t

1 I I I t I I - - F ' - " - - ' ~ - - 7

2 3 4 5 6 7 8 9 10
Number of Synoptic States

Fig. 1. Efficiency of information storage as a function of the number of synaptic states. The
circles are for networks with two-state neurons, the squares for networks with four-state
neurons, and the triangles for networks with three-state neurons.

Finite-State Neural Networks 569

since, as Qw becomes large, the efficiencies of networks with an odd
number of neuron states converges to that of networks with an even
number of neuron states.

There are three special limits when the maximum value of ~ can be
found exactly: (1) Q~ ~ az with Qw fixed, (2) Q.~.~'bo with Q~ fixed,
and (3) Q x , Q~ ~ oo with Q.~./Q~ ~ const. The first case yields the simple
relationship o~oc 1/lnQr For the second and third cases, ~ (Q , , Q r
depends only upon 0 (~/Q.,~) and the width of the threshold region, zt0 =
10+(t/i)- O-(qi) r (i= 2,..., Qw - 1) [assuming 0-(t / l) = -0+(r /e) = - a z] .

- - a 1 - - a When AOocQw and O-(qe.,~)ocQw , then, in cases 2 and 3, r ~ O and
the following equation is easily obtained:

In Q ~
g(Q+' , Q t) ~ a In Q x + Q%1 -~) • const (2.6)

Hence, for cases 2 and 3, if a >/1, then g ~ 1/a and if a < 1, then g ~ 0.
Thus, with a = l, g asymptotically approaches maximum efficiency. It
would be interesting if the exponent a could be related to the gain
parameter in analog neural networks, ~6) so that one could interpolate
between the two approaches.

For simulation purposes, not only is the efficiency of information
storage important, but the absolute number of bits needed is also of impor-
tance. On a computer with B bits per word, a fully connected network with
N neurons and N 2 couplings requires O(BN 2) bits when both the
couplings and neurons are real variables. On the other hand, a network of
two-state neurons and synapses requires only O(N 2) bits. With a 32-bit
machine, this amounts to using 32 times fewer bits. In order to realize this
advantage in the absolute storage requirements, a fast algorithm is needed
for the updating of networks in which single bits are used to describe single
neurons and/or synapses. Such an algorithm is presented in the next
section.

3. A FAST NUMERICAL SIMULATION ALGORITHM

For any neural network simulation, the quantity which must be
repeatedly calculated is the local field hi(S[t]),

hi(S[t]) = ~, JoS/(t)
j ~ i

= ~ JqSj (t) - JuSi (t)
J

= H i (t) - JiiSi(t) (3.1)

Updating the entire network once involves calculating Hi(t) at every site,

570 Kohring

i.e., O (N 2) arithmetic operations. Therefore, it is fitting to concentrate on
calculating Hi(t) as fast and efficiently as possible. This can be done by
generalizing the multineuron coding algorithm developed for the Hopfield
model.(8,9)

Consider the case Q,, = Q I = 2. In this case, only one bit is needed to
describe a single neuron or synapse. If the two neuron states are ~/1 = - t
and r/2= +1 and the synapses are likewise, then the following corre-
spondence can be made between the computer bits and the neuron states:
0 ~ -1 and 1 ,*~ 1. Since conventional computers operate on words with B
bits in one word, it is possible to store B neurons or synapses in one com-
puter word. Denote such a word by a(w) for the neurons and)~(i, w) for the
synapses; then Eq. (3.1) can easily be calculated by using the following
expression to calculate Hi(t):

Hi(t) = N - 2 ~ POPCNT(2(i , w)| (3.2)
w

where | symbolizes the XOR (excluded or) function, and POPCNT
counts the number of bits set equal to one in its argument. Since the sum-
mation unavoidably includes the diagonal term J,,, this term should be
subtracted as indicated in Eq. (3.1) if it is not desired. Equation (3.2)
requires only O(N2/B) arithmetic calculations, because B coupling evalua-
tions are made each time the XOR and POPCNT commands are executed.

This procedure has been implemented on the Cray-YMP/832 using
Cray-standard Fortran. A fully connected network with N=32,000
neurons (1.024 x 10 9 couplings) ran at a speed of 7.1 • 109 coupling evalua-
tions per second (7.1 Gcops) on a single processor. Using a standard algo-
rithm and the same amount of memory, one can simulate a network with
only N ~ 4000 neurons (1.6 • 107 couplings). Furthermore, a conventional
one-word, one-neuron algorithm runs at 0.2 Gcops on a single processor,
or a about 35 times slower than the present algorithm. (On all eight
processors of the Cray-YMP/832, the present algorithm would run at
about 50 Gcops and the conventional algorithm would have a speed of
about 1.5 Gcops.)

Starting from this basic algorithm, the extension to cases of larger Q
or Q t is straightforward. For example, at Q.~, = 4 and Q~ = 2 (or, by sym-
metry, Q ~ = 2, Q t = 4) one can store the four states of Q x in two bits on
two different words, e.g., a(w) and Q(w). If ql = -2 , r/2= - 1 , r/3= +1,
r/4 = +2, then one bit in a(w) is used to indicate the absolute value and one
bit in Q(w) to indicate the sign. Hi(t) is then calculated as

Hi(t) = N + ~ POPCNT(Q(w)) - 4 ~ POPCNT(L0(w) A (2(i, w) | a(w)))
w w

- 2 ~ POPCNT(-TO(w) ^ (2(i, w)| a(w))) (3.3)
w

Fini te-State Neural Networks 571

where ^ symbolizes the logical AND function and 7 symbolizes the logi-
cal NOT function. Such a program requires N 2 + 2N bits (2N 2 + N bits for
Q.r =2, Q : =4), and it runs at approximately 2.5 Gcops. Although the
speed is considerably reduced from that obtainable with Q.e. = Q : = 2, it
still runs ten times faster than if real words had been used.

Such constructions can be continued for larger values of Qo~- and Q : ,
although at the cost of diminishing returns. The speed of the program falls
off rather rapidly, leaving low memory usage as the only advantage to
using the above algorithm. But with the high storage efficiencies achieved
for small values of Q,: and Q : , there may be little reason to consider
using larger values.

4. LEARNING IN FINITE-STATE NETWORKS

An obvious approach to learning in systems composed of finite-state
neurons and synapses is to use a truncated version of Hebbian couplings.
With Qx = Q : = 2, one obtains the so-called "clipped-synapses" model,
which has been studied in detail and yields results similar to the Hopfield
model. 115~ All such one-step learning rules are known to give far from
optimal performance 116) and one would like to construct networks which
perform near the optimal performance discussed in Section 2. Forrest used
an exact enumeration scheme to find the optimal couplings in his studies
of a Q~ = Q : = 2 network on a nearest-neighbor, two-dimensional square
latticeJ ~7) But when the number of couplings per neuron grows like N, such
a learning procedure becomes impractical.

One method for learning which has produced good results for fully
connected, Q~ = Q : = 2 networks of up to a few hundred neurons is that
of simulated annealingJ ~ This method is very general; however, it is non-
local and somewhat time consuming. Although it is desirable to have a
local learning rule such as those which exist for networks with continuously
varying synapses ~2~ (see ref. 19 for a review), that does not seem to be
possible. Instead, one can easily create a local learning rule which is
"guided" by a real vector.

Consider the problem of making the states {~} stable states of a
network with Q,.=Q: =2. In this case, the fixed-point constraints of
Eq. (2.3) reduce to t~2~

1
h~'= / - ~ r162 Vi and ~ (4.1)

,,/ iv /~ i

where ~c is a constant which determines the size of the basins of attraction.
A simple local learning rule which must be executed sequentially over the
patterns and nodes can be defined as follows:

8,22,,62/3-4-5

572 Kohring

I. Calculate an error mask e,~' for pat tern ~:

J'l if x>_,h~
e, i = (4.2)

0 if x<h~'

2. Change a real vec tor Tj. by A 7"/-=Ei~i@l.g--n,'~"~"l'" "~"t.
3. Change J0 to Ju = sgn(T/).

4. Repeat steps 1-3 until condit ion (4.1) is satisfied.

This learning algori thm is an extension of the learning algori thms used
with cont inuous coupling networks (see ref. 19 for a review). It is simple to
implement and requires only an addit ional real vector of length N. Since
the storage requirements of the p rogram grow like O(N:) bits, the addi-
tional NB bits needed for this vector are not normal ly important . Further-
more, this a lgori thm is easily extendible to the more general situation of
Q.,,Qy>2.

Unlike the case of cont inuous synapses, this algori thm cannot be
proven to converge to a solution of (4.1), even when such a solution exists.
For this reason, it will be demonst ra ted via numerical simulations that the
learning algori thm presented here does perform quite reasonably.

Figure 2 shows a plot of the learning time of the above algori thm as
a function of h at N = 4 0 9 6 and e = 0 . 2 5 for Q.,~. = Q r c~=0.31 for
Q., = 2 , Q~ = 3 , and e = 0 . 5 for Q+ = 2 with cont inuous synapses. In this

1 0 0 -

8 0 -

--c ~ 60-

E
.=4
c 4 0 -

o

: /
/ /
/ /
, ! J

/ /

e ;
,' /

]
, I /

/
~. ,ll " l / ,~ .~j

.e ,O' 20-ir./ ..~

. �9 A A

0 i i l ~ i i I i "7

. 0 0 +1'0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . g o 1 . 0 0
Kappa

Fig. 2. Median learning time on an N = 4096 network. The circles are for Q..~. = Q.r = 2
at ~=0.25, the squares for Q.+.=2, Q t = 3 at ~=0.31, and the triangles for Q.,~=2, Q.~
continuous at �9 = 0.5.

F i n i t e - S t a t e N e u r a l N e t w o r k s 573

figure, the maximum value of x is signaled by the sharp increase in the
learning time. Using x=0.35 for Q+. = Q t = 2 and K= 0.50 for Q+-= 2,
Q t = 3, so that the learning time is not too long, but the network is near
optimal, the probability of recall has been calculated and is shown in
Fig. 3. The probability of recall for random patterns is calculated by
starting the system in some randomly chosen configuration {Sj(0)} having
an overlap m~'(0)-= (l / N) ~ j S~(0)~ with pattern # and then updating the
system in parallel, using Eq. (2.1), until a fixed point is reached. Figure 3
shows that at these values of ~ the systems can indeed function as
associative memory devices. Since the maximum value of x decreases as
increases, larger values of ct will have smaller basins of attraction and these
systems will no longer function as associative memory devices; hence,
~,, ~ 0.25 for Q. ~.= Q~ = 2 and ~e'~ 0.31 for Q.~ = 2, Q t = 3. Note that ~e
is about four times smaller than the optimal ~ shown in Fig. 1. This is in
rough agreement with the results found for continuous couplings, where
the effective maximum crew0.5 was also found to be about four times
smaller than the theoretical maximum, t~~

The learning algorithm presented here is local, simple to implement,
and seems to be among the fastest so far discussed in the literature (for
alternative learning algorithms see ref. 20). For finite-state networks it is a
good starting point for simulation purposes, and so far has shown that
such networks perform better than their continuously varying counterparts.

1.00-

0.80-

o ~ 0.60-
r

t, o

~ 0.40-
#.

0.20-

H ~i---IIi-- H - - I

0-00~ I r T ~ I ----V--' l

.700 .750 300 350 .900 .950 1.000
re(O)

Fig. 3. Probability of retrieval for an N=4096 network. Circles are for Q., = Q r = 2 at
~=0.25, and the squares are for Q.~ =2, Q , =3 at ct =0.31.

574 Kohring

5. S U M M A R Y AND CONCLUSIONS

The main results of this paper are summarized in Table I, where the
Q . , . = Q s = 2 network, the Q.e.=2, Q r network, and the Q.+ =2
network with continuous couplings are compared when all of these systems
are implemented on the 64-bit Cray-YMP. Here it is easily seen that the
performance of finite-state networks is superior to that of networks with
continuously varying synapses in four of the five categories. The main
advantage of synapses with a large number of states seems to be faster
learning, but for this price, most of the coupling space is wasted, resulting
in low efficiency. It would seem that high storage efficiency can only be
achieved at the expense of long learning times. More generally, the calcula-
tions of Sections 2 and 3 have shown that whenever Qr ~>Q.~., the
network performance is severely degraded in all respects except learning
time. For those designing novel computing devices, this can be very impor-
tant because neurons or synapses with a small number of states are simpler
to construct than those with a larger number of states.

Furthermore, with regard to possible neural network device implemen-
tations, the present work suggests that there is a great deal of parallelism
which can be exploited in conventional computer designs. In the short
term, it may be worthwhile to consider computers with a small number of
processors, each working with very long words. With the algorithm intro-
duced in Section 3, a speedup equal to the increase in word length is easily
achieved if the clock frequency can be held fixed. Such speedups are not so
easily obtained on massively parallel machines.

With respect to biology, the present results have indicated the inef-
ficiency of systems with Q~ >> Q,.. It would be of great interest, then, if the
situation with respect to the number of neuron firing states and the number
of synaptic states could be clarified. This would give a better indication of

Table I. Comparison of Performance Factors for Finite-State Neural
Networks Running on a Single Processor of the Cray-YMP"

Bits Speed Learning
Network type gm,x ~rf required (Gcops) steps

Q.~ = Q j = 2 0.833 0.25 N 2 7.1 57
Q ~ = 2, Qj = 3 0.740 0.20 2N 2 2.4 39

Q. ~ = 2, Q~ = 264 0.031 0.008 64N 2 0.2 17

a The last column gives the median number of learning steps at N = 4096 when the network
is operating near gerr. Q t = 2u represents the Cray approximation to continuous synapses.

Finite-State Neural Networks 575

the relative importance nature has placed upon the speed of learning as
opposed to the efficiency of information storage.

One final point with respect to neural network implementations; since
a Q,~ = Q s = 2 network has ~e only half of that for a network with con-
tinuous couplings, it means that a Q x = Q t = 2 network with 2N neurons
can store as many patterns as an N-neuron network with continuous
couplings. Moreover, the former network with still require far fewer bits for
storage and it will still update about eight times faster. Hence, on conven-
tional computers there is clearly much to be gained by using the algorithms
introduced in this paper.

ACKNOWLEDGMENTS

I would very much like to thank D. Stauffer and K. E. Kiirten for
many helpful conversations related 1o this work.

REFERENCES

I. D. Amit, H. Gutfreund, and H. Sompolinsky, Ann. Phys. 173:30 (1987); C. M. Newman,
Neural Networks 1:223 (1988); T. Kohonen, Self-Organization and Associative Memory,
3rd ed. (Springer-Verlag, Berlin, 1989).

2. D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Processhlg (MIT Press,
Cambridge, 1986); R. Scalettar and A. Zee, BioL Cybern. 58:193 (1988); K. Hornik,
M. Stinchcombe, and H. White, Neural Networks 2:359 (1989); M. Opper, W. Kinzel,
J. Kleinz, and R. Nehl, University of Giessen preprint.

3. J. R. Barker, in Parallel Processing in Neural Systems and Computers, R. Eckmiller,
G. Hartmann, and G. Hauske, eds. (North-Holland, Amsterdam, 1990).

4. D. J. Amit, G. Parisi, and S. Nicolis, Network 1:75 (1990).
5. J. J. Hopfield, Proe. Natl. Acad. Sci. USA 79:2554 (1982); W.A. Little, Math. Bh~sei.

19:101 (1975).
6. C. M. Marcus, F. R. Waugh, and R. M. Westervelt, Phys. Rev. A 41:3355 (1990), and

references therein.
7. M. Abeles, E. Vaadia, and H. Bergman, Network 1:13 (1990).
8. T. J. P, Penna and P. M. C. Oliveira, J. Phys. A 22:L719 (1989).
9. G. A. Kohring, J. Star. Phys. 59:1077 (1990); J. Phys. A 23:2237 (1990).

10. B. M. Forrest, J. Phys. A 21:245 (1988); J. Kr~itzschmar and G.A. Kohring, J. Phys,
(Paris) 51:223 (1990).

11. P. Peretto and J. J. Niez, Biol. Cybern. 54:53 (1986); C. L. Giles and T. Maxwell, Appl.
Opt. 26:4972 (1987); G. A. Kohring, J. Phys. (Paris) 51:145 (1990).

12. T. M. Cover, Proc. IEEE EC14:326 (1965).
13. E. Gardner, Eur. Phys. Lett. 4:481 (1987); J. Phys. A 21:257 (1988).
14. W. Krauth and M. M6zard, ./. Phys. (Paris) 50:3057 (1989).
15. J. L. van Hemmen, Phys. Rev. A 36:1959 (1987); H. Englisch and M. Herrmann, Studia

Biophys. 132:145 (t989); D. Bormann, Z. Phys. B 79:307 (1990).
16. I. Kanter, Phys. Rev. A 37:2739 (1988); C. Meunier, D. Hansel, and A. Verga, J. Stat.

Phys. 55:859 (1989).

576 Kohring

17. B. M. Forrest, J. Phys. (Paris) 50:2003 (1989); see also K. E. K/.irten, J. Phys. (Paris)
50:2313 (1989).

18. E. Amaldi and S. Nicolis, J. Phys. (Paris) 50:2333 (1989); H. K6hler, S. Diederich,
W. Kinzel, and M. Opper, Z, Phys. B 78:333 (1990).

19. L. F. Abbot, Network 1:105 (1990).
20. K. E. Kiirten, J. Phys, (Paris), in press.
21. K. Binder and A. P. Young, Rev. Mod. Phys. 58:801 (1986).
22. K. E. Kiirten, Phys. Lett. A 129:157 (1988); A. Canning and E. Gardner, J. Phys. A

21:3275 (1988); E. Koscielny-Bunde, J. Star. Phys. 58:1257 (1990).
22. E. Gardner and B. Derrida, J. Phys. A 21:271 (1988).

